A synergistic DNA logic predicts genome-wide chromatin accessibility.

نویسندگان

  • Tatsunori Hashimoto
  • Richard I Sherwood
  • Daniel D Kang
  • Nisha Rajagopal
  • Amira A Barkal
  • Haoyang Zeng
  • Bart J M Emons
  • Sharanya Srinivasan
  • Tommi Jaakkola
  • David K Gifford
چکیده

Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide.

This unit describes Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), a method for mapping chromatin accessibility genome-wide. This method probes DNA accessibility with hyperactive Tn5 transposase, which inserts sequencing adapters into accessible regions of chromatin. Sequencing reads can then be used to infer regions of increased accessibility, as well as...

متن کامل

Assaying the epigenome in limited numbers of cells.

Spectacular advances in the throughput of DNA sequencing have allowed genome-wide analysis of epigenetic features such as methylation, nucleosome position and post-translational modification, chromatin accessibility and connectivity, and transcription factor binding. However, for rare or precious biological samples, input requirements of many of these methods limit their application. In this re...

متن کامل

Measuring Arabidopsis chromatin accessibility using DNase I-polymerase chain reaction and DNase I-chip assays.

DNA accessibility is an important layer of regulation of DNA-dependent processes. Methods that measure DNA accessibility at local and genome-wide scales have facilitated a rapid increase in the knowledge of chromatin architecture in animal and yeast systems. In contrast, much less is known about chromatin organization in plants. We developed a robust DNase I-polymerase chain reaction (PCR) prot...

متن کامل

Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies

Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyse...

متن کامل

Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding.

Animal transcription factors drive complex spatial and temporal patterns of gene expression during development by binding to a wide array of genomic regions. While the in vivo DNA binding landscape and in vitro DNA binding affinities of many such proteins have been characterized, our understanding of the forces that determine where, when, and the extent to which these transcription factors bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 2016